Development Policies when Accounting for the Extensive Margin of Fertility

Thomas Baudin¹ David de la Croix² Paula Gobbi²

¹DEMO, Université catholique de Louvain

²IRES, Université catholique de Louvain

November 3, 2015

Most studies look at fertility without distinguishing its two margins:

extensive: decision on having children or not (childlessness) intensive: decision on number of children |_{having children}

Childlessness is large in developing countries.

Is there anything special with the <u>extensive margin</u> (childlessness) we should care about ? • Details

Does it affect the effectiveness development policies / trends in reducing total fertility

Introduction

Completed fertility drops as mother's education increases

36 developing countries (women aged 40-54)

Policy

The intensive margin

This is also true at the individual country level (married)

Introduction Data Theory Estimation Decomposition Policy Conclusion

The intensive margin

And for single women

The extensive margin

Introduction

Childlessness and education are U or J-shaped related

36 developing countries

Policy

Introduction Data Theory Estimation Decomposition Policy Conclusion

The extensive margin

This is also true at the individual country level (married)

Introduction Data Theory Estimation Decomposition Policy Conclusion

The extensive margin

And for single women

Introduction Decomposition Policy 00000000000000

The extensive margin

Childlessness rates for Brazil, Mexico, Cambodia and Zambia:

9 / 61

 $\ensuremath{\mathbf{Q1:}}$ Why do childlessness & fertility relate to women's education differently ?

Q2: Does childlessness depend on development? How?

Q3: How does including this margin affect development policies? Compulsory Education Family Planning Fight against Child Mortality Women empowerment

- Q1: There are different reasons why women are childless:
 - N: natural
 - P: poverty: nutrition, pollution, diseases (\searrow with education)
 - M: infant mortality (\searrow with education)
 - O: high opportunity cost (\nearrow with education) \approx voluntary
 - + Finding the right partner is difficult

theory with endogenous marriage and fertility that allows to decompose childlessness for 36 countries.

Introduction	Data	Theory	Estimation	Decomposition	Policy	Conclusion
0000000000000000	000000	000000000000	0000000	000000	000000000	0000

Examples of results:

Argentina has a childlessness rate of 13.9%: 70% are childless due to high opportunity cost.

Cameroon has a childlessness rate of 17.8%: 82% are childless due to poverty ("African Infertility Belt").

Answers – Effect of policies on total fertility

Q2: The level of childlessness does not depend on development but its composition does

Q3: Neglecting the endogeneity of marriage and the extensive margin leads to

... believe that imposing **primary education** to all will reduce fertility, while it will not.

... under-estimate the effect of **female empowerment**, in particular when voluntary childlessness is high.

... over-estimate the effect of family planning.

... over-estimate the effect of a reduction in child mortality.

On childlessness in economics

On voluntary childlessness: Gobbi (JPop, 2013), Aaronson, Lange & Mazumder (AER, 2014)

On different types of childlessness in the US: Baudin, de la Croix & Gobbi (AER, 2015)

On childlessness in demography

Poston and Trent (JFI, 1982), + many other papers

- 1. Data on childlessness, fertility of mothers and marriage
- 2. Theory
- 3. Estimation of the model for 36 countries
- 4. Results on childlessness decomposition
- 5. Impact of development policies

For each census, take all women aged 40-54.

For married women, find their husbands

Compute age range to get 90% of husbands. Take all men from census in this age range

Drop divorced, separated, widowed, polygynous

Keep Single (never married) and Married/in union. 4.5 millions women

Years of schooling, children ever born, children surviving

Ex: Brazil, 7.2% single, 71.6% married, 0% polygynous, 15.2% divorced/separated, 6% widowed. Age range for men: 37-63.

Introduction	Data	Theory	Estimation	Decomposition	Policy	Conclusion
00000000000000	o●oooo	00000000000000	00000000		000000000	0000
Census Da	ta					

Country	Year	Obs.	Country	Year	Obs.	
Argentina	1991	285621	Kenya	1999	42051	-
Bolivia	2001	42659	Liberia	2008	12995	
Brazil	2000	621313	Morocco	2004	97332	
Chile	2002	118660	Mali	2009	20940	
Colombia	2005	248780	Malawi	2008	40906	
Costa Rica	2000	23608	Rwanda	2002	23877	
Dominican Republic	2010	50491	Senegal	2002	19475	
Ecuador	2010	86974	Sierra Leone	2004	13647	
Haiti	2003	41598	Tanzania	2002	136317	
Jamaica	2001	8639	Uganda	2002	54428	
Mexico	2010	764469	South Africa	2001	189722	
Nicaragua	2005	23886	Zambia	2010	38106	
Panama	2010	22376	Indonesia	1995	40068	
Peru	2007	176570	Cambodia	2008	89137	
El Salvador	2007	34473	Thailand	2000	46798	
Uruguay	1996	20313	Vietnam	2009	788013	
Venezuela	2001	137955	Palestine	1997	9548	
Cameroon	2005	50876				
Ghana	2010	116990	All		4539611	1

Introduction Data Theory Estimation Decomposition Policy Conclusio

Childlessness across countries - married women

We compute:

childlessness rate for single and married women wrt schooling fertility of mothers for single and married women wrt schooling (children surviving) marriage rates (male and female) wrt schooling

Regularity 1: Fertility of mothers is decreasing with education for both singles and married

Regularity 2: U or J-shaped relationship between childlessness rates and education

Regularity 3: Highly educated women marry less often

Introduction Data Theory Estimation Decomposition Policy Conclusion

Specificities: child mortality (IPUMS)

Country and education specific survival probabilities from census (ratio children surviving/children ever born)

Introduction	Data	l heory	Estimation	Decomposition	Policy	Conclusion
	00000	00000000000000	00000000	000000	000000000	0000
C		and the second		N		

Specificities: unwanted births (DHS)

Country	Year	Meas. 1	Meas. 2	Meas. 3	Meas. 4	Meas. 5
BRA	2010	0.491	0.281	0.238	0.141	0.548
COL	2010	0.385	0.236	0.159	0.033	0.464
DOM	2007	0.334	0.165	0.129	0.036	0.358
NIC	2001	0.639	0.347	0.303	0.217	0.572
PER	2012	0.540	0.392	0.307	0.085	0.479
GHA	2008	0.388	0.239	0.159	0.032	0.256
KEN	2008-9	0.539	0.294	0.237	0.108	0.394
LIB	2013	0.427	0.145	0.105	0.069	0.144
MLI	20012-13	0.349	0.075	0.048	0.030	0.078
MWI	2010	0.572	0.315	0.260	0.124	0.416
RWA	2010	0.686	0.516	0.432	0.157	0.309
SLE	2013	0.347	0.082	0.045	0.050	0.059
UGA	2011	0.568	0.223	0.191	0.122	0.373
ZAM	2007	0.443	0.200	0.157	0.090	0.298
IDN	2012	0.316	0.185	0.108	0.026	0.224
KHM	2010	0.420	0.260	0.174	0.050	0.235
VNM	2002	0.490	0.419	0.211	0.026	0.354

Heterogeneous agents characterized by:

```
gender i = \{m, f\}
education e
non-labor income a
some women can control their fertility, others cannot (not
known a priori)
some women are naturally sterile (not known a priori)
```

Marriage is an intra-country 2 stage game:

Stage 1: random match (opposite sex, same country) and marriage decision knowing e & aStage 2: consumption and fertility decision, after having learned natural fertility status and ability to control fertility Mortality shocks realize

The utility of an individual of sex i is

$$u(c_i, n) = \ln(c_i) + \ln(n + \nu)$$

n: "net" fertility (discrete variable)

Married - collective decision model:

$$W(c_f, c_m, n) = \theta u(c_f, n) + (1 - \theta)u(c_m, n)$$

where

$$heta \equiv rac{1}{2} \, \underline{ heta} + (1 - \underline{ heta}) rac{w_f}{w_f + w_m}$$

and $w_f = \gamma \exp\{\rho e_f\}$, $w_m = \exp\{\rho e_m\}$.

Infant mortality: Each child has a country specific probability $q(e_f)$ to survive to adulthood with $q'(e_f) > 0$

n follows a binomial distribution (Kalemli-Ozcan (2002) and Baudin (2012)):

$$P(n|N) = \binom{N}{n} [q(e_f)]^n [1 - q(e_f)]^{N-n}$$

N: the total number of births

ADVANTAGE: allows to understand childlessness driven mortality

Introduction Data Theory Estimation Decomposition Policy Conclusion

$$\mathbb{E}_n[u(c_f,n)|N] = \sum_{n=0}^N P(n|N)u(c_f,n).$$

$$\mathbb{E}_n\left[W(c_f, c_m, n)|N\right] = \sum_{n=0}^N P(n|N)W(c_f, c_m, n).$$

Ability to control births number:

A proportion $\kappa(e_f) \in \{0, 1\}$ controls fertility perfectly, while $1 - \kappa(e_f)$ have the max number of children Only applies to married women (singles can always walk away)

Natural sterility:

Fraction sterile is $\chi_i \in [0, 1]$, uniformly distributed over education categories and across countries

Social sterility:

to be able to give birth, any woman has to consume at least \hat{c}

$$c_f < \hat{c} \rightarrow N = 0$$

 Introduction
 Data
 Theory
 Estimation
 Decomposition
 Policy
 Conclusion

 Budget constraints
 Second Sec

Single men:

$$c_m = (1 - \delta_m) w_m + a_m - \mu$$

Single women:

$$c_f + \phi n w_f = (1 - \delta_f) w_f + a_f - \mu$$

Couples:

$$c_f + c_m + \phi n \left(lpha w_f + (1 - lpha) w_m
ight) = w_m + w_f + a_f + a_m - \mu$$

Single woman:

$$\underline{N}_{\mathsf{M}} = \left\lfloor \frac{1 - \delta_f}{\phi} \right\rfloor$$

Married woman:

$$\bar{N}_{\mathsf{M}} = \left\lfloor \frac{1}{\alpha \phi} \right\rfloor$$

Let us solve backward. In the end, we observe:

- ▶ Sterile persons $\rightarrow \tilde{V}_f, V_m, \tilde{U}_f, \tilde{U}_m$
- ▶ Fecund single women $\rightarrow V_f$
- ▶ Fecund couple controlling fertility \rightarrow U_f, U_m
- Fecund couple not controlling fertility $\rightarrow \widehat{U}_f, \ \widehat{U}_m$

Introduction Data Theory Estimation Decomposition Policy Conclusion

► Fecund single women

- 1. Social sterility: $N^* = 0$
- 2. Constrained fertility:

$$\overline{N}_{s} = \left\lfloor \frac{(1-\delta^{f})w_{f} + a_{f} - \mu - \hat{c}}{\phi w_{f}} \right\rfloor$$

$$N^* = \operatorname{argmax}_{N \in [0, \overline{N}_s]} \mathbb{E}_n [u(c_f, n) | N]$$

3. Unconstrained fertility:

$$N^* = \operatorname*{argmax}_{N \in [0, \underline{N}_{\mathsf{M}}]} \mathbb{E}_n [u(c_f, n) | N]$$

Fecund couple controlling fertility

- 1. Social sterility: $N^* = 0$
- 2. Constrained fertility:

$$\overline{\mathbf{N}} = \left[\frac{w_f + w_m + a - \hat{\mathbf{c}}}{\phi(\alpha w_f + (1 - \alpha) w_m)} \right]$$

$$N^* = \operatorname{argmax}_{N \in [0, \overline{N}]} \mathbb{E}_n [W(c_f, c_m, n) | N]$$

3. Unconstrained fertility:

$$N^* = \underset{N \in [0, \bar{N}_{\mathsf{M}}]}{\operatorname{argmax}} \mathbb{E}_n \left[W(c_f, c_m, n) | N \right]$$

Introduction Data Theory Estimation Decomposition Policy Conclusion

Fecund couple not controlling fertility

$$\widehat{N} = egin{cases} \overline{N} & ext{if } heta \mathcal{B}(ar{N}_{\mathsf{M}}) < \hat{c} \ \overline{N}_{\mathsf{M}} & ext{otherwise.} \end{cases}$$

where

$$\mathcal{B}(n) = (1 - \alpha \phi n) w_f + (1 - (1 - \alpha) \phi n) w_m + a_f + a_m - \mu$$

Marriage decision

Data

Expected values of accepting a marriage offer:

Theory 00000000000000

$$\mathcal{M}_f(e_f, a_f, e_m, a_m) = (\chi_f + (1 - \chi_f)\chi_m) \, \tilde{U}_f + (1 - \chi_f - (1 - \chi_f)\chi_m) \left(\kappa U_f + (1 - \kappa) \widehat{U}_f\right)$$

$$\mathcal{M}_m(e_m, a_m, e_f, a_f) = (\chi_m + (1 - \chi_m)\chi_f) \tilde{U}_m + (1 - \chi_m - (1 - \chi_m)\chi_f) \left(\kappa U_m + (1 - \kappa)\widehat{U}_m\right)$$

Value of being single:

$$\begin{aligned} \mathcal{S}(e_f, a_f) &= \chi_f \tilde{V}_f + (1 - \chi_f) V_f \\ \mathcal{S}(e_m, a_m) &= V_m. \end{aligned}$$

A match will end up in a marriage iff:

$$\mathcal{M}_f(e_m, a_m, e_f, a_f) > \mathcal{S}(e_f, a_f)$$

 $\mathcal{M}_m(e_f, a_f, e_m, a_m) > \mathcal{S}(e_m, a_m)$

Estimation – Parameters à priori fixed

Natural sterility: $\chi_f = \chi_m = 0.01$

Mincerian determination of wages:

$$w_f = \gamma \exp\{\rho e_f\}$$

 $w_m = \exp\{\rho e_m\}$

ho = 5% (Oyelere, 2008) for all countries γ is country specific from the Global Gender Gap Report (Hausmann et al. 2013)

Introduction Data Theory Estimation Decomposition Policy Conclusion OCOO Fertility control probabilities (DHS)

Fertility control probabilities built from DHS - married women Assumption: a woman does not control her fertility if:

(completed fertility - ideal fertility) ≥ 2 she believes her partner did not want more children than herself

Remaining parameters p are estimated using SMM:

$$\min_{p} \quad f(p) = [d - s(p)] [W] [d - s(p)]'$$

W: diagonal weighting matrix with $1/d^2$ as elements

d: fertility of mothers (single and married), childlessness (single and married), marriage rates of men and women

s(p): theoretical moments

Estimation – theoretical moments s

For each country we draw 100,000 hypothetical women for each category of education with:

- a non-labor income (a_f) from an exponential distribution with mean β

- a potential husband with $(e_m \text{ and } a_m)$
- a probability that her children die
- a probability to control her fertility

 \Rightarrow for each education we obtain 100,000 decisions about marriage and fertility, we can average and calculate the simulated moments

Introduction Data Theory Estimation Decomposition Policy Conclusion

Value of parameters

Two alternatives:

Same parameters in all countries,

Country Specific parameters

		Global	Cou	Country specific	
Description	р	Value	Min	Mean	Max
Mean of the exponential distribution	β	0.278	0.152	0.372	0.807
Preference parameter	ν	6.773	5.119	7.029	9.249
Minimum consumption to procreate	ĉ	0.345	0.081	0.306	0.538
Good cost supported by a household	μ	0.230	0.045	0.293	0.565
% of childrearing supported by women	α	0.797	0.663	0.871	0.999
Time cost for one child	ϕ	0.207	0.131	0.184	0.230
Time cost of being single (men)	δ^m	0.262	-0.028	0.194	0.439
Time cost of being single (women)	δ^{f}	0.080	-0.131	0.124	0.429
Bargaining parameter	$\underline{\theta}$	0.722	0.010	0.632	0.948

Value of parameters - Identification

Results: fit of childlessness

Confirms intuitions of Poston and Trent (1982). Composition of childlessness changes with development.

Introduction	Data	Theory	Estimation	Decomposition	Policy	Conclusion
000000000000000000000000000000000000000	000000	00000000000000000	0000000	000000	00000000	0000

Decomposition of childlessness

-

Country	Theory	Voluntary	Social	Mort.	Natural
ARG	12.9	9.0	1.3	0.7	1.9
BOL	6.0	0.8	2.8	0.6	1.9
BRA	11.5	4.6	4.3	0.8	1.9
CHL	8.8	4.9	1.7	0.4	1.8
COL	12.6	6.4	4.0	0.4	1.8
MEX	8.9	3.4	3.4	0.3	1.9
CAM	18.7	0.4	16.2	0.4	1.8
GHA	10.1	2.1	5.1	0.9	1.9
LBR	13.6	0.3	11.0	0.4	1.9
MLI	15.9	0.3	13.0	0.7	1.9
SLE	13.8	0.4	10.4	1.1	1.9
ZMB	9.7	0.6	5.8	1.3	2.0
VNM	6.4	1.7	2.6	0.2	1.9
All	8.5	2.1	3.8	0.6	1.9

Decomposition of childlessness – voluntary childlessness

Country	Theory	Voluntary	Social	Mort.	Natural	Data
ARG	12.9	9.0	1.3	0.7	1.9	
BOL	6.0	0.8	2.8	0.6	1.9	
BRA	11.5	4.6	4.3	0.8	1.9	
CHL	8.8	4.9	1.7	0.4	1.8	
COL	12.6	6.4	4.0	0.4	1.8	
MEX	8.9	3.4	3.4	0.3	1.9	
CAM	18.7	0.4	16.2	0.4	1.8	
GHA	10.1	2.1	5.1	0.9	1.9	
LBR	13.6	0.3	11.0	0.4	1.9	
MLI	15.9	0.3	13.0	0.7	1.9	
SLE	13.8	0.4	10.4	1.1	1.9	
ZMB	9.7	0.6	5.8	1.3	2.0	
VNM	6.4	1.7	2.6	0.2	1.9	
All	8.5	2.1	3.8	0.6	1.9	

Decomposition of childlessness – social sterility

Country	Theory	Voluntary	Social	Mort.	Natural	Data
ARG	12.9	9.0	1.3	0.7	1.9	
BOL	6.0	0.8	2.8	0.6	1.9	
BRA	11.5	4.6	4.3	0.8	1.9	
CHL	8.8	4.9	1.7	0.4	1.8	
COL	12.6	6.4	4.0	0.4	1.8	
MEX	8.9	3.4	3.4	0.3	1.9	
CAM	18.7	0.4	16.2	0.4	1.8	
GHA	10.1	2.1	5.1	0.9	1.9	
LBR	13.6	0.3	11.0	0.4	1.9	
MLI	15.9	0.3	13.0	0.7	1.9	
SLE	13.8	0.4	10.4	1.1	1.9	
ZMB	9.7	0.6	5.8	1.3	2.0	
VNM	6.4	1.7	2.6	0.2	1.9	
All	8.5	2.1	3.8	0.6	1.9	

Introduction 00000000000000	Data 000000	Theory 00000000000000	Estimation 00000000	Decomposition	Policy 000000000	Conclusion 0000	

Robustness

E	Benchmark	higher ρ	machist	assortative
			marriage	matching
Parameters - Global value				
ho	0.050	0.111	0.050	0.050
λ	0	0	0	0.15
Fit				
f(p) global	0.929	1.472	17.709	0.992
R^2	0.967	0.967	0.578	0.955
Development and Childlessnes	is			
∂ voluntary/ ∂ schooling	0.57	0.56	-0.02	0.55
∂ pov. driven/ ∂ schooling	-0.75	-0.71	-0.65	-0.77
Decomposition of Childlessnes	is			
Voluntary	2.13	1.75	2.96	1.79
Poverty driven	3.83	4.65	4.93	4.26
Mortality driven	0.66	0.33	0.12	0.66
Natural sterility	1.90	1.90	1.88	1.90

 Introduction
 Data
 Theory
 Estimation
 Decomposition
 Policy
 Conclusion

 Occorrection
 Occorrection

Universal education $(e_i \ge 7)$

Female empowerment ($\gamma = 1$)

Family planning $(\kappa(e_f) = 1, \forall e_f)$

No child mortality $(q(e_f) = 1, \forall e_f)$

 $\mathsf{F} = \mathsf{m} \left(1 - \mathsf{C}_{\mathsf{married}}
ight) n_{\mathsf{married}} + \left(1 - \mathsf{m}
ight) \left(1 - \mathsf{C}_{\mathsf{single}}
ight) n_{\mathsf{single}}$

Partial change in fertility $\Delta F_{\mbox{\tiny partial}} \colon$ effect of the intensive margin only

Total change in fertility ΔF : includes the effect on marriage and childlessness

 Introduction
 Data
 Theory
 Estimation
 Decomposition
 Policy
 Conclusion

 Occorrection
 Occorrection

Universal education $(e_i \ge 7)$

Female empowerment ($\gamma = 1$)

Family planning $(\kappa(e_f) = 1, \ \forall e_f)$

No child mortality $(q(e_f) = 1, \forall e_f)$

$$\mathsf{F} = \mathsf{m} \left(1 - \mathsf{C}_{\mathsf{married}}
ight) \mathit{n}_{\mathsf{married}} + \left(1 - \mathsf{m}
ight) \left(1 - \mathsf{C}_{\mathsf{single}}
ight) \mathit{n}_{\mathsf{single}}$$

Partial change in fertility $\Delta F_{\mbox{\tiny partial}} {:}$ effect of the intensive margin only

Total change in fertility ΔF : includes the effect on marriage and childlessness

Universal Education

50 / 61

Introduction Data Theory Estimation Decomposition Policy Conclusion

Importance of endogenous marriage and childlessness

		Universal Education		
	F	Δ F/F	$\Delta F_{p}/F$	
BOL	3.4	8.0	5.0	
BRA	2.8	2.4	-4.5	
COL	3.1	2.3	-1.8	
GHA	4.0	-1.9	-6.1	
KEN	5.3	3.9	2.5	
MLW	5.2	-1.5	-3.6	
RWA	4.9	8.5	7.0	
ZAF	3.7	2.5	-0.2	
VNM	3.0	1.5	-1.1	
A 11	0 F	0.1	2.6	
All	3.5	0.1	-3.6	

Female Empowerment

Introduction Data Theory Estimation Decomposition Policy Conclusion

Importance of endogenous marriage and childlessness

		Female empowerment		
	F	$\Delta F/F$	$\Delta F_{p}/F$	
BOL	3.4	-5.0	-4.0	
BRA	2.8	-14.0	-7.2	
COL	3.1	-12.6	-7.2	
GHA	4.0	-9.2	-8.0	
KEN	5.3	-1.9	-3.2	
MLW	5.2	-2.7	-3.5	
RWA	4.9	0.3	-1.3	
ZAF	3.7	-4.8	-3.4	
VNM	3.0	-10.2	-8.4	
All	3.5	-11.9	-8.5	

Family planning

54 / 61

Importance of endogenous marriage and childlessness

		Family planning		
	F	$\Delta F/F$	$\Delta F_{\rm p}/F$	
BOL	3.4	-3.2	-4.0	
BRA	2.8	-18.3	-20.3	
COL	3.1	-9.6	-9.4	
GHA	4.0	-13.3	-12.3	
KEN	5.3	-2.6	-3.9	
MLW	5.2	-17.4	-16.7	
RWA	4.9	-3.3	-4.7	
ZAF	3.7	-2.9	-2.4	
VNM	3.0	-26.6	-28.8	
All	3.5	-13.6	-15.0	

No mortality

Importance of endogenous marriage and childlessness

		No child mortality		
	F	ΔF/F	$\Delta F_p/F$	
BOL	3.4	20.5	21.1	
BRA	2.8	2.9	4.9	
COL	3.1	3.3	3.5	
GHA	4.0	7.7	7.9	
KEN	5.3	12.2	13.6	
MLW	5.2	13.6	18.1	
RWA	4.9	26.0	31.7	
ZAF	3.7	6.6	5.9	
VNM	3.0	0.8	1.4	
All	3.5	4.1	5.7	

Decomposition of childlessness rates into its main components allows to understand better how childlessness reacts to development.

Poverty part of childlessness decreases with development: one more year of schooling decreases social sterility by 0.75 percentage points.

One more year of schooling increases the opportunity cost part of childlessness by 0.57 percentage points from the 9th year of schooling onwards.

Eluding adjustments of childlessness and marriage can lead to incorrect conclusions in term of economic policies.

Figure : Completed fertility of mothers and childlessness rates by education category in the US for women aged between 40 and 70. Source: 1990 US Census.

Introduction	Data	Theory	Estimation	Decomposition	Policy	Conclusion
00000000000000	000000	0000000000000	00000000	000000	000000000	0000

Fertility Decomposition					
Gap	with US	Intensive	Extensive		
Austria	-10.2%	-11.5%	1.4%		
Belgium	-7.1%	-8.3%	1.2%		
Denmark	-6.6%	-10.7%	4.1%		
France	8.1%	-1.3%	9.4%		
Germany (W.)	-17.8%	-13.6%	-4.1%		
Ireland	35.5%	30.7%	4.8%		
Netherlands	-5.1%	-4.4%	-0.7%		
Norway	4.1%	0.7%	3.4%		
Sweden	3.0%	-1.1%	4.1%		
UK	2.0%	1.4%	0.6%		
Romania	15.7%	6.5%	9.3%		

Table : Decomposition of Completed Fertility Gaps into Intensive (Fertility of Mothers) and Extensive Margins (Motherhood). We use the following decomposition: if z = ab, then $\frac{z-z'}{z} = \frac{a(b-b')}{z} + \frac{(a-a')b'}{z}$ where a and b respectively denote motherhood rates and the fertility of mothers.

Back